неверно что существовал такой вид дисплеев как

Помощь в дистанционном обучении

Решение тестов, помощь в закрытии сессии студентам МОИ, Синергии, ГТЕП, Витте, Педкампус, Росдистант

%D0%BF%D0%BE%D0%BC%D0%BE%D1%89%D1%8C %D0%B2 %D0%B4%D0%B8%D1%81%D1%82%D0%B0%D0%BD%D1%86%D0%B8%D0%BE%D0%BD%D0%BD%D0%BE%D0%BC %D0%BE%D0%B1%D1%83%D1%87%D0%B5%D0%BD%D0%B8%D0%B8

Компьютерная графика тест МОИ

screenshot 200

Тест Московского Открытого Института и Синергии «Компьютерная графика» Цена 200р.

3. Масштаб 1 : 1 называется величиной

4. ПРЯМОУГОЛЬНЫЕ виды растров используются наиболее часто.

14. Компьютерная графика как основа компьютерного искусства зародилась в … 1920-х гг. 1980-х гг. 1950-х гг. 2000-х гг.

15. Расположите в хронологической последовательности ключевые события в истории компьютерной графики: Тип ответа: Сортировка 1- 1957 получено первое цифровое изображение в Национальном бюро стандартов (США) 2- 1963 выходит в свет первый созданный на компьютере фильм Эдварда Зайека 3- 1963 впервые в мире проводится персональная выставка работ по компьютерному искусству — 4- 1998 Вольфганг Лайзер основывает Музей Цифрового Искусства

17. Наука, предметом изучения которой являются создание, хранение и обработка моделей и их изображений с помощью компьютера, – это Компьютерная графика 18. К ключевым словам относятся слова, зарезервированные в синтаксисе ActionScript для специальных целей

20. Если для создания реалистичной модели объекта используются геометрические примитивы (куб, шар, конус и пр.) и гладкие, так называемые сплайновые поверхности, то речь идет о трехмерной графике

21. Активное взаимодействие ресурса, программы, услуги и человека, их взаимовлияние – это интерактивность

27. Если в растровой графике базовым элементом изображения является точка, то в векторной графике линия

39. Комплекс аппаратных и программных средств, позволяющих пользователю работать в диалоговом режиме с разнородными данными (графика, текст, звук, видео), организованными в виде единой информационной среды, – это Мультимедиа

40. Количество бит (объем памяти), используемое для хранения и представления цвета при кодировании одного пикселя, называют а

47. Порядок расположения точек в растровом изображении – это Pacmp

55. Использование стандартной процедуры фотографирования экрана кнопкой Print Screen схоже с процедурой захвата изображения с экрана

57. Пакет Photoshop разработан компанией … ADOBE

58. Разрешение обозначается как количество точек на дюйм (dpi) или ПИКСЕЛЕЙ на дюйм (ppi)

59. Создание нового документа в Adobe Illustrator начинается с выбора профиля нового документа исходя из предполагаемого типа вывода

60. Эффект последовательного мультимедийного наделения изображения двигательными функциями – это Анимация

65. Колорит — это система соотношения цветов, образующая некое единство и являющаяся эстетическим выражением красочного разнообразия действительности

67. Технология мультимедиа – это особый вид компьютерной технологии, который объединяет в себе как традиционную статическую визуальную информацию (текст, графику), так и динамическую (речь, музыку, видеофрагменты, анимацию и т.п.) –

68. Колористика — наука о цвете, включающая знания о природе цвета, основных, составных и дополнительных цветах, характеристиках цвета, цветовых контрастах, смешении цветов, колорите, цветовой гармонии, цветовой культуре и языке цвета

74. Простейшая незамкнутая линия ограничена двумя точками, именуемыми … границами узлами пикселями векторами

75. С помощью линеек в Adobe Illustrator можно точно позиционировать и измерять размеры объектов в окне иллюстрации или на монтажной области

76. Подключаемые к Photoshop модули, позволяющие обрабатывать изображение по заданному алгоритму, – это Фильтры

77. Сравнивая такие разработки в области компьютерной графики, как компьютерная анимация, цифровое изображение, растровая графика и виртуальная реальность, можно утверждать, что новейшей из них является … компьютерная анимация цифровое изображение растровая графика виртуальная реальность

79. … в Adobe Flash показывает расположение слоев и последовательность изменения кадров (объектов, находящихся в кадре) Тип ответа: Одиночный выбор Панель свойств Панель временной шкалы Панель инструментов Главное меню

80. Активное взаимодействие ресурса, программы, услуги и человека, их взаимовлияние — это… Тип ответа: Текстовый ответ Введите ответ: интерактивность

81. К мультимедиа, в частности, относятся Тип ответа: Множественный выбор игры видеоприложения текстовые документы аудиоприложения табличные документы презентации

82. К недостаткам растровых изображений можно отнести то, что … Тип ответа: Множественный выбор существует мало графических редакторов для работы с ними они занимают большое количество памяти редактирование растровых изображений требует больших массивов памяти растровые изображения выглядят нереалистично

83. Известны такие виды растров, как … Тип ответа: Множественный выбор прямоугольный гексагональный круговой треугольный

84. Когда размерность фигуры, получаемой из каких-то простейших объектов (отрезков),… размерности этих объектов — мы имеем дело с фракталом Тип ответа: Одиночный выбор больше меньше равна неравна Список литературы Ответы на тест «Компьютерная графика»

В изобразительном искусстве существует направление, занимающееся получением изображения случайного фрактала – «фрактальная монотипия» или

Программное обеспечение для создания фракталов включает такие программы как

Формат имеет аналогичный своему названию алгоритм сжатия GIF, JPEG, JPG

Источник

История ЖК-дисплеев с активной матрицей

В этом году появился первый тонкоплёночный транзистор (thin-film transistor, TFT), разработанный инженером RCA Полом Веймером — изобретателем, получившим множество патентов, связанных с технологией электронно-лучевых трубок. Его работа, вдохновлённая предыдущими инновациями, стала фундаментом, приведшим к созданию современной технологии производства дисплеев. RCA использовала изобретение в качестве основы технологии создания дисплеев на жидких кристаллах, которую в дальнейшем усовершенствовал её конкурент, компания Westinghouse.

o3suf6ndyn6iostoptagsopt7d8Apple PowerBook G4 — прекрасный пример ЖК-дисплея с активной матрицей

Изобретение ЖК-дисплея с активной матрицей как образец истории изобретателей

В истории электроники не было сюжета прекрасней, чем рассказ об изобретателе (или группе изобретателей), разработавшем что-то великолепное, компания которого отказалась от его проекта из опасений, что оно не соответствует её потребностям.Вот несколько таких историй, ставших известными:

Дэвид Коллинз, новатор в истории штрихкода, многие годы работал в Sylvania над разработкой устройств для железнодорожных вагонов, но в конечном итоге компания отказалась от его идеи, поэтому он решил двигаться самостоятельно и добился огромного успеха.

Xerox Alto, один из первых примеров графического интерфейса пользователя, игнорировался компанией Xerox до начала 1980-х, когда один из посетителей Xerox PARC, руководитель Apple Стив Джобс, не позаимствовал его базовые концепции для Apple Lisa и Macintosh.

Kodak самостоятельно разработала множество базовых концепций цифровой камеры, но изобретателю Стиву Сассону сначала сказали отказаться от его идеи, и только потом Kodak с запозданием начала использовать устройство, изобретённое сотрудником компании.

Наша история будет похожей, только речь в ней идёт о том самом экране, на который, скорее всего, вы сейчас смотрите, особенно если он изготовлен по технологии ЖК-дисплеев.

В 1970-х годах пара инженеров Westinghouse, Питер Броди и Фан Чэнь Ло, разработали первый ЖК-экран на активной матрице. Родившийся в Венгрии Броди заинтересовался новой экспериментальной технологией тонкоплёночных транзисторов, считавшейся потенциальным способом визуального отображения содержимого в более компактном, нежели ЭЛТ, виде.

В заявке на патент изобретатели подчеркнули, что технология реализуема, но требует другого технического базиса вместо кремния, который обычно используется в транзисторах.

«Уже очевидно, что твёрдотельные плоскопанельные дисплеи концептуально реализуемы», — утверждалось в заявке на патент. «Попытки использования для этого кремниевой технологии ограничены размером кремниевых пластин, что не позволяет создавать дисплеи большой площади».

Ничего особенного, просто несколько пикселей под микроскопом.

Поэтому вместо кремния авторы использовали тонкоплёночные транзисторы на стеклянной подложке, что позволило устройству быть прочным, но более тонким, и в то же время пропускать свет. Тонкая плёнка крепилась на слое изолятора с электродом, пропускающим напряжение по экрану. Устройство площадью около сорока квадратных сантиметров могло отображать объекты с разрешением 20 строк на дюйм. (Для сравнения: MacBook Air имеет разрешение примерно 227 строк на дюйм.)

Сегодня увидеть отдельные транзисторы на экране довольно сложно без, допустим, микроскопа, но в 1970-х это было очень легко, поэтому когда журнал «Time» писал об этом изобретении в 1974 году, то описал его как «похожий на бумагу-миллиметровку паттерн, имеющий 14400 точек пересечения».

image loaderПитер Броди, сыгравший важную роль в развитии ЖК-панелей на активной матрице

Хотя разработчики признавали, что устройство было довольно грубым, а «разрешение позволяло отображать только силуэты букв, чисел и простых изображений», оно продемонстрировало потенциал плоских экранов, которые однажды заменят громоздкие ЭЛТ-дисплеи. В статье Time Броди сказал, что его скромное устройство является «вероятно, самой крупной в мире интегральной схемой», а не просто экраном.

Как указано в заявке на патент, это был не единственный тип тонкого экрана — например, существовала плазменная технология, получившая популярность в телевизорах в начале 2000-х; на её основе были созданы терминалы компьютерной системы PLATO, известные своим оранжевым оттенком изображения.

Но это стало только отправной точкой технологии, которая осталась с нами. К середине 1990-х цветные дисплеи с активной матрицей стали привычными для ноутбуков благодаря сочетанию ярких цветов и малой толщины. Однако несмотря на то, что концепция была придумана в отделе исследований и разработок американской компании и совершенствовалась другими компаниями, почти все панели даже на самом рассвете их популярности производились японскими изготовителями.

В чём же заключалась проблема? Разработанная Броди и Ло технология так и не получила развития в Westinghouse; частично это было вызвано тем, что компания постепенно уходила с рынка телевизоров, потому что столкнулась на нём со сложностями. Как писал в 1991 году MIT Technology Review, из-за быстрого развития ноутбуков с цветным экраном на компьютерном рынке Westinghouse в начале 1970-х прекратила продавать телевизоры и закрыла исследовательский отдел компании, позволивший Броди и его команде разработать устройство.

На самом деле, эксперименты Westinghouse с плоскопанельными ЖК-дисплеями завершились в 1970-х; то же самое произошло и с другими крупными американскими компаниями. «И крупные корпорации, и стартапы с венчурным капиталом уходили из этой области, обычно это было вызвано производственными сложностями», — писали Ричард Флорида и Дэвид Броуди.

Наблюдатели из Westinghouse, дававшие интервью Time, сказали, что технология была отличной, но разработчики часто пропускали дедлайны; Уильям Коутс, работавший в отделе потребительской электроники, сообщил, что в результате это оттолкнуло компанию от использования инновационной технологии.

«Мы постоянно не укладывались в графики и в бюджеты», — говорит он.

Из этого можно извлечь такой урок: если кто-то не справляется с управлением, но у него есть хорошая идея, то найдите ему менеджера получше.

Такое количество миллисекунд требуется для обновления экрана на пассивной матрице; для сравнения: согласно статье 1991 года в InfoWorld article, в то время экрану на активной матрице требовалось от 15 до 30 миллисекунд. На тот момент в ноутбуках постепенно набирали популярность дисплеи с пассивной матрицей, потому что низкокачественные экраны значительно снижали цену ноутбуков, стоивших тогда как подержанный автомобиль. Однако в статье утверждалось, что успех экранов с пассивной матрицей продлится недолго. «Даже самые упорные сторонники технологии цветных дисплеев с пассивной матрицей признают, что будущее цвета в портативных устройствах скорее всего будет связано с активной матрицей», — писали журналисты Лиза Пикарелле и Том Квинлан. «Как только масштабы производства TFT-дисплеев с активной матрицей станут выше, цены неминуемо начнут снижаться».

6ebtqw70me281zkhohpovrgcomkПримеры первых компьютерных экранов 1980-х, представленные в статье Popular Science. В некоторых используются жидкие кристаллы; в других — плазма. Распространение цветных экранов началось только в 1990-х.

ЖК-панели в основном производились в Азии из-за нежелания крупных технологических компаний инвестировать в них

Изучая рост популярности ЖК-экранов с активной матрицей, я поразился схожести тенденций между ЖК и eInk. Часто электронные чернила становились решением в поисках задачи, которому не хватало инвестиций, чтобы попасть на мейнстримный рынок вне рынка электронных книг, на котором они медленно совершенствовались в течение многих лет.

Но для популярности eInk недоставало возможности отображения цветов, несмотря на множество попыток, например, при помощи технологий наподобие Mirasol; из-за этого им не удавалось привлечь внимание производителей, несмотря на серьёзные инвестиции крупных компаний.

С другой стороны, проблема ЖК-дисплеев с активной матрицей заключалась не столько в отсутствии интереса к продукту, сколько в нежелании больших компаний вкладываться в него.

В частности, это отразилось и в том, чем занялся Броди, когда Westinghouse навсегда отказалась от его разработок. Броди основал собственную компанию Panelvision, пытаясь развивать и поставить на коммерческие рельсы технологию активных матриц, которую в то время старались разрабатывать и другие компании. Технология активной матрицы имела ключевое преимущество перед многими другими типами дисплейных технологий, использовавшихся в то время в компьютерных экранах — широкие углы обзора. Низкокачественные ЖК-дисплеи, например, те, которые использовали технологии пассивной матрицы, сталкивались с проблемами низкого качества освещения и размытия, и их нельзя было использовать на улице.

«При увеличении количества строк возникает всё больше сложностей с адресацией каждого элемента, между ними возникает взаимное влияние», — объяснял Броди в статье 1985 года в Popular Science. «Другими словами, для активации ЖК-элементов нужно подать на строку достаточно сильный заряд, но не такой сильный, чтобы активировались соседние пиксели».

В статье Броди совершенно верно предсказывает, что при увеличении масштабов производства рынок ЖК-экранов будет становиться всё менее дорогим. Но существовала проблема — в конечном итоге, крупномасштабной разработкой этих технологий стала заниматься не компания Броди. Вскоре после интервью Popular Science его компания была продана, а сам он покинул её, и столкнулся с ещё большими сложностями поиска лиц, заинтересованных в его новой компании Magnascreen.

Частично это было вызвано тем, что появились мировые конкуренты, внедрявшие более мощные инновации. Например, Matsushita (теперь называющаяся Panasonic) и Hitachi в 1980-х начали активно инвестировать средства в собственные технологии TFT-панелей; кульминацией их исследований стала разработка в 1990-х технологии in-plane switching (IPS). Панели IPS используются в ноутбуках даже сегодня.

Но существовали и более обширные культурные проблемы, нанёсшие ущерб американским производителям TFT-дисплеев: как подчёркивается в статье 1991 года в MIT Technology Review, в процессе поиска инвестиций Броди столкнулся со множеством препятствий, потому что технологические компании хотели видеть в Panelvision поставщика, способного создать технологию для их устройств; они не хотели сложностей с инвестициями в разработку самой технологии. (Мешало и то, что Panelvision находилась в Питтсбурге, который из Кремниевой долины казался дальше, чем Япония.)

Эта проблема достаточно широко распространена — как говорится в статье в Electrochemical Society, многие исследовательские работы проводятся в западных странах, но производства в них не так много.

«Некоторые американские и европейские компании активно участвуют в исследованиях и разработках, внося большой вклад в понимание физики устройства и технологии процессов», — объясняет автор Юэ Ко. «Однако они построили очень мало заводов для крупномасштабного производства».

Частично это было вызвано тем, что создать качественный ЖК-дисплей было сложно (позже с подобными сложностями столкнулись и производители цветных eInk-дисплеев).

Признайтесь, сегодня вы считаете это чем-то само собой разумеющимся.

Однако японские компании без сомнений шли на подобные инвестиции, и в результате прежнее поколение крупных технологических компаний попросту уступила фундаментальную технологию другой части мира. Флорида и Броуди пишут:

К сожалению, опыт Magnascreen, Panelvision и Westinghouse неуникален. Как и Westinghouse, другие крупные компании (RCA, GE, Burroughs, IBM, Raytheon, Zenith, Hughes, Texas Instruments, NCR, AT&T и Exxon) взращивали технологии плоских дисплеев, а затем отказывались от них. Остатки работ Panelvision и Magnascreen стали причиной роста множества новых компаний: Plasma Graphics (дочерняя компания Burroughs), Electro-Plasma (Owens-Illinois) и кучи других, большинство из которых провалилось. Ни одна из них не добралась до стадии массового производства.

Неспособность корпораций США заработать на большом изначальном превосходстве в важной технологии позволила иностранным конкурентам их обойти. Сегодня в США нет крупных фабрик ЖК-дисплеев с активной матрицей. За последние несколько лет четыре японские корпорации — Hitachi, Matsushita, Seiko Epson и Sharp — инвестировали в такие заводы в своей стране больше ста миллионов долларов. Hoshiden делает экраны для портативных Macintosh. Sharp создаёт экраны для нового компьютера Texas Instruments в формате ноутбука. IBM недавно организовала совместное предприятие с Toshiba под названием Display Technologies Inc. для создания 10-дюймовых цветных дисплеев с активной матрицей для своих компьютеров в Японии.

Разумеется, изобретённые в одной стране технологии не обязаны в ней оставаться. На самом деле, глобализация чаще всего является благом, потому что её преимущества помогают всем.

Но странно, что потенциал этой фундаментальной технологии, которую вы скорее всего используете для чтения этой статьи, был, по сути, отвергнут целой страной из-за нежелания инвестировать в производство.

В этом году двое исследователей из Eastman Kodak, Чин Тан и Стивен Ван Слайк, разработали первый практичный органический светодиод (organic light-emitting diode, OLED), в котором использовались два слоя тонких органических компонентов для того, чтобы дисплей мог генерировать свет на уровне пикселей, а не благодаря подсветке. Эта технология, разработанная на основе инноваций, созданных десятки лет назад в таких организациях, как RCA, а позже усовершенствованных для обеспечения поддержки полноцветных экранов, стала ключевым элементом современных смартфонов и телевизоров верхнего ценового сегмента. (И в отличие от разработчиков ЖК-технологии с активной матрицей, Kodak сотрудничала с японской компанией Sanyo, однако позже Sanyo купила Kodak.)

Нежелание инвестировать в фабрики и производство помогло американским компаниям избежать естественного риска использования непроверенной технологии. Но в то же время это дало отдельной части мира контроль над процессом производства важнейших компонентов. И это означает, что если возникнут проблемы (как это недавно случилось с большим дефицитом компонентов чипов для дисплеев), такой контроль сделает нас более подверженными риску.

Фабрика по производству смарт-телевизоров в действии.

Очевидно, что я не хочу сказать, что люди, принимающие решения об инвестициях, думают именно так — в первую очередь они думают о собственных нуждах, а не о рынке в целом. Но это заставляет задуматься, как бы выглядела отрасль технологий, если бы её важнейший компонент не был так быстро отдан в руки единственной части мира. Вероятнее всего, мир выиграл бы от того, если бы дисплейные технологии разрабатывались и совершенствовались в разных местах.

По крайней мере, одно можно считать истинным — как справедливо предсказал Питер Броди сорок лет назад в начале статьи в Inc. о своём уходе из Westinghouse: «Электронно-лучевая трубка, подобно динозаврам, скоро вымрет, и причина этого будет такой же: слишком большая масса и слишком маленький мозг».

В этом он был абсолютно прав, и он оказался значительно прозорливее, чем считали его работодатели и инвесторы. Почему они не видели того, что видел он?

Источник

IPS, LTPS, P-OLED или AMOLED? Разбираемся с основными типами дисплеев в портативной технике

При выборе нового смартфона, умных часов, планшета или ноутбука важнейшую роль играет дисплей. В последние годы почти всегда выбор был между IPS и AMOLED матрицами. Однако в последнее время рынок домашней и портативной техники заполонили новые типы матриц, в которых путаются даже производители ― OLED, P-OLED, PLS, Super AMOLED, Dynamic AMOLED и далее по списку. Если упростить, то все они являются родственными типами, которые отличаются в деталях. Каких именно — мы расскажем в этом материале. После его прочтения вы сможете давать платные консультации друзьям, притворяться консультантом в Эльдорадо и больше никогда не испытывать неловкие паузы в разговоре с малознакомым человеком.

wide pic

Отличия между IPS и AMOLED-матрицами

В портативной технике в последнее время господствует 2 типа матриц ― IPS и AMOLED. Интернет разделился на несколько враждующих лагерей. В первом топят за IPS-дисплеи и нещадно критикуют AMOLED за излишнюю цветастость и кислотность. В секте свидетелей флагманов наоборот уверены, что в хорошем телефоне должен стоять только AMOLED или super AMOLED дисплей, а все остальное просто экономия. В вопросе «IPS или AMOLED» истина, как обычно, находится посередине и у каждого типа матриц есть свои хорошо известные преимущества и недостатки.

01

Матрица типа in-plane switching (или просто IPS) является продвинутой вариацией обычного жидкокристаллического дисплея, но с более ровной и яркой подсветкой из светодиодов. Сильными сторонами IPS-матриц является натуральная цветопередача с широкими углами обзора, приправленные увеличенным сроком службы светодиодов и доступностью таких матриц. При этом у них не самая впечатляющая контрастность, а черному цвету не хватает глубины. Из-за узкого диапазона подсветки IPS-экраны (особенно недорогие) не умеют хорошо разделять наиболее яркие и наиболее темные пиксели, поэтому такой экран не совсем корректно отображает глубину черного цвета и оттенки серого.

Если провести прямое сравнение между аппаратами с AMOLED и IPS дисплеями одинакового разрешения, то можно заметить, что яркость, динамический диапазон и контраст на стороне OLED. На таких матрицах шрифты выглядят четче, резче и лучше прорисованы. Причем независимо от яркости подсветки и оттенков. С другой стороны, у IPS лучше проработаны фоновые участки, мягкие переходы выглядят различимее и ярче.

Источник

Виды мониторов для компьютера

img 15581 e1617284579159

Существует 6 видов компьютерных мониторов, которые отличаются типом установленных в них экранов. Последние определяют способ вывода изображения на дисплей, влияют на энергопотребление и безопасность для глаз. Расскажем обо всех видах мониторов, выделим их достоинства и недостатки.

ЭЛТ-мониторы

picture 1

В этих мониторах используют электронно-лучевые трубки (кинескопы). Технология была запатентована в 1897 году, а в 1906 она помогла впервые вывести изображение на экран. Как это работает:

ЭЛТ-мониторы с высокой частотой развертки (Гц), ценятся среди геймеров и киноманов за счет минимальной задержки.

Достоинства технологии:

    Скорость отклика. Отсутствие битых пикселей. Высокое качество картинки под любым углом.

Недостатки:

Сегодня такие мониторы не производятся, поэтому купить их проблематично.

ЖК-мониторы (LCD)

picture 3

В основе этой технологии лежат жидкие кристаллы, открытые в 1888 году. Первые попытки с их помощью вывести изображение были приняты в 1960-ых, но получалось добиться только монохромной картины. В 1987 компания Sharp выпустила первый цветной экран с использованием LCD. Об особенностях работы:

Положение жидких кристаллов определяют транзисторы, ток на которые подает специальная микросхема — все это для каждого из миллионов пикселей на мониторе. Является основным видом мониторов, но с разными типами матриц.

Достоинства:

    Насыщенные цвета. Высокая энергоэффективность. Не подвержены выгоранию пикселей.

Недостатки:

    Ограниченный угол обзора, максимальная яркость. Из-за подсветки отображение черного цвета ненасыщенное. Качество изображения зависит от установленного контроллера кристаллов.

Плазменные-мониторы (PDP)

picture 10

Внешне, плазменные мониторы не отличаются от жидкокристаллических, но используют совершенно другую технологию воспроизведения картинки:

Достоинства:

    Широкие углы обзора. Отсутствует мерцание. Высокий уровень яркости и контрастности.

Недостатки:

Технология не получила широкого распространения из-за дороговизны производства, и сегодня купить такие устройства проблематично.

LED-мониторы

picture 12

Это прямое развитие ЖК-панелей, где вместо люминесцентных ламп используют светодиоды. Источники света могут располагать как по краям панели, так и по всей ее площади, избегая засветов.

Преимущества:

    Меньший вес, по сравнению с LCD. Высокий уровень глубины и контрастности цветов. Натуральное изображение, без “кислотных” оттенков.

Недостатки:

OLED-мониторы

picture 14

Технология кардинально отличается от конкурирующей ЖК/LED и имеет больше общего с плазменной панелью. Принцип работы следующий:

Главное отличие от других технологий в том, что все пиксели излучают свет независимо друг от друга. Проблемы с такими панелями в неравномерной работе пикселей: один может оказаться ярче второго, третий темнее и подобное. Это заставляет производителей добавлять субпиксели или расставлять пиксели в особом порядке.

Преимущества:

    Высокая яркость. Минимальное энергопотребление. Насыщенный черный цвет — пиксели просто отключаются.

Недостатки:

    Выгорание пикселей спустя время. Высокий уровень вредной для глаз пульсации на низких уровнях яркости.

Технология производства OLED матрицы дорога, поэтому мониторов с ней практически нет.

QLED-мониторы

picture 16

Это вариация ранее упомянутых LED-мониторов. Все отличие сводится к установке дополнительного слоя — представляет собой металлический нанофильтр на основе квантовых точек. Последние, поглощают излучение светодиодов и транслируют его с четко выверенной длиной волны, которую определяет размер точки, и цвета не смешиваются.

Как итог, пользователи получают более насыщенные и яркие цвета. Относительно названия — его придумала и запатентовала Samsung, хотя у LG есть аналог названный NanoCell.

Преимущества:

    Реалистичная цветопередача. Более насыщенные цвета, по сравнению со стандартными LCD и LED.

Недостатки:

Заключение

Из 6 видов мониторов самым популярным считаются ЖК-модели, получившие развитие с изменением типа подсветки (LCD LED) и добавлением нанофильтра (QLED). Самыми дорогим остаются OLED-варианты. Навсегда вышли из производства громоздкие ЭЛТ-мониторы.

Источник

Adblock
detector