нейрон смещения зачем нужен

Нейронные сети. (Machine learning #1)

Что такое нейронная сеть и как она работает? Разбираем популярную технологию на простых примерах!
Сайту исполняется год и в честь этого я решил написать небольшой пост о том, чем я сейчас занимаюсь 🙂
Однажды, гуляя по просторам YouTube, я наткнулся на очень классный канал, посвященный математике, физике и многим другим интересным вещам (даже радиоэлектронике!) На канале было очень много всего, чего я не успел пока посмотреть, но я обратил внимание на ролик, посвященный работе нейронных сетей. Так как я давно уже слышал о нейронных сетях и похожих вещах (вроде генетических алгоритмов), но при этом не понимал толком, о чём идёт речь, я очень заинтересовался. Это цикл из 4х видео, которые, по сути, являются визуализацией статьи Michael Nielsen.

Здесь я хочу дать краткое и простое описание работы нейронной сети на примере классической задачи распознавания нарисованных от руки цифр.
Итак, представьте, что перед вами встала задача распознать цифры:

Наш мозг без труда справляется с такой задачей! Но что, если у нас есть миллион написанных от руки цифр, которые необходимо распознать и записать, допустим, в базу данных. Нужно написать программу, которая будет делать это за вас.
Но как будет работать такая программа? И тут задача, которая казалась пустяковой, превратилась в большую проблему: каждый человек пишет одни и те же цифры по-разному, а компьютер этого не знает. Вот, например, написанная по-разному, цифра 5:

Понятие нейрона, веса и смещения

Давайте рассмотрим простую нейронную сеть:

Запишем сумму со всех нейронов из входного слоя:

$$
z = \sum\limits_^<3> \qquad (1)
$$
Получившийся результат может быть любым вещественным числом. Нам нужно преобразовать его в число от 0 до 1, которое мы и присвоим нейрону.
Сделать это можно, например, так:

Видно, что рост функции от нуля до единицы происходит в окрестности нуля. Но часто активационный барьер необходимо сместить. Поэтому к числу \(z \) в (1) нужно прибавить число \(b \), которое называется смещением (bias). То есть

$$
z = \sum\limits_^ + b \qquad (3)
$$
Для всего слоя (в матричном виде):

Как происходит обучение?

Картинка \(28*28 \) содержит \(784 \) пикселя, именно столько и будет нейронов в входном слое.
В выходном слое будет 10 нейронов, каждый из которых указывает на цифру от \(0\) до \(9\). Для упрощения понимания изобразим лишь один скрытый слой. По выходному слою мы будем судить о том, как отработал алгоритм.

Как и было сказано ранее, работа алгоритма полностью определяется входными данными и взаимосвязями нейронов. Когда алгоритм не натренирован, то, скорее всего, он не сможет дать правильный ответ, так как взаимосвязи между нейронами (веса нейронов и смещения) настроены неправильно. Именно в подборе этих параметров и заключается обучение нейронной сети.
Теперь дадим нашей сети группу картинок с написанными цифрами для тренировки и после каждого завершения алгоритма будем проверять то, насколько точно она «угадала» цифру.
Для того, чтобы оценить эффективность работы алгоритма, введём так называемую функцию расходимости (cost function) следующим образом:

Чем ближе результат работы алгоритма к требуемому результату, тем меньше становится функция расхождения. То есть задача обучения на данном этапе сводится к уменьшению функции расхождения.
Как нужно изменять все \(w\) и \(b\), чтобы максимально быстро уменьшить функцию расхождения?
Нужно найти вектор-градиент функции и идти в противоположную сторону. Если бы наша сеть имела только одно смещение \(b\) и один вес \(w\), то данный процесс можно было бы проиллюстрировать мячом, скатывающимся в самую нижнюю точку ямки:

$$
\frac<\partial C(w, b)> <\partial y_t>= \frac<1><2l>2y_t = \frac
$$
А производная
$$
\frac<\partial y_t(x_, w, b)><\partial w_i>
$$
легко считается, так как у нас есть явный вид функции \(y_t\) от \(w_i\) в (5).
Теперь разберёмся с производными \(С(w, b)\) по смещениям \(b\). Расчёт производится аналогично:

В принципе, это все! Весь процесс обучения взял на себя компьютер, который считает частные производные функции расхождения и с их помощью правильно корректирует параметры связей нейронов.
Однако, как я понял, чаще всего вычисляют не все частные производные (в нашем случае их \(12719\)), а только часть, разделяя параметры на небольшие группы. Такой подход называется stochastic gradient descent, и он быстрее приводит к нужному результату, так как на вычисление всех частных производных тратится большее время.

Можете похлопать себя по плечам, ведь выше прочитанный материал не из простых и требует усилия для усвоения!
Это не последний мой пост, посвященный нейронным сетям и машинному обучению. У меня есть несколько крутых проектов, связанных с этой темой, которые я хочу реализовать и более глубоко раскрыть в следующих моих статьях.

Отдельная благодарность моей сестре Соне (отличному репетитору по русскому языку) за час смеха и мучения при правке статьи!

Друзья! Я очень благодарен вам за то, что вы интересуетесь моими работами, ведь каждый пост на сайте даётся очень непросто. Я буду рад любому отклику и поддержке с вашей стороны.

Источник

Какова роль смещения в нейронных сетях?

Я знаю о градиентном спуске и алгоритме обратного распространения. Чего я не понимаю, так это когда важно использовать предвзятость и как вы ее используете?

Например, при отображении AND функции, когда я использую 2 входа и 1 выход, она не дает правильных весов, однако, когда я использую 3 входа (1 из которых является смещением), она дает правильные веса.

Это может помочь взглянуть на простой пример. Рассмотрим эту сеть с 1 входом и 1 выходом, которая не имеет смещения:

bI2Tm

Выход сети рассчитывается путем умножения входных данных (х) на вес (W 0 ) и передачи результата через некоторую функцию активации (например, сигмовидную функцию).

Вот функция, которую эта сеть вычисляет для различных значений w 0 :

ddyfr

Это именно то, что позволяет сделать уклон. Если мы добавим смещение в эту сеть, вот так:

oapHD

. тогда выходной сигнал сети становится sig (w 0 * x + w 1 * 1.0). Вот как выглядит выход сети для различных значений w 1 :

t2mC3

Просто чтобы добавить мои два цента.

Более простой способ понять, что такое смещение: оно чем-то похоже на константу b линейной функции

Это позволяет вам перемещать линию вверх и вниз, чтобы лучше соответствовать прогнозу с данными. Без b линия всегда проходит через начало координат (0, 0), и вы можете получить худшее соответствие.

Эта тема действительно помогла мне разработать собственный проект. Вот еще несколько иллюстраций, показывающих результат простой двухслойной нейронной сети с прямой связью с блоками смещения и без нее в задаче регрессии с двумя переменными. Веса инициализируются случайным образом и используется стандартная активация ReLU. Как пришли к выводу ответы передо мной, без смещения ReLU-сеть не может отклоняться от нуля при (0,0).

nsDCc

7rl1h

Два разных вида параметров могут быть отрегулированы во время обучения ANN, весов и значений в функциях активации. Это нецелесообразно, и было бы проще, если бы был настроен только один из параметров. Чтобы справиться с этой проблемой, изобретен нейрон смещения. Смещающий нейрон лежит в одном слое, связан со всеми нейронами в следующем слое, но ни с одним на предыдущем слое, и он всегда излучает 1. Поскольку смещающий нейрон излучает 1, веса, связанные с нейроном смещения, добавляются непосредственно к объединенная сумма других весов (уравнение 2.1), как и значение t в функциях активации. 1

Кроме того, смещение позволяет использовать одну нейронную сеть для представления похожих случаев. Рассмотрим логическую функцию AND, представленную следующей нейронной сетью:

Один персептрон может использоваться для представления множества логических функций.

Уклон не является NN термин, это общий термин алгебры для рассмотрения.

Y = M*X + C (уравнение прямой)

Теперь, если C(Bias) = 0 тогда, линия всегда будет проходить через начало координат, т.е. (0,0) и зависит только от одного параметра, т.е. M Е. От наклона, поэтому у нас будет меньше вещей для игры.

В логистической регрессии ожидаемое значение цели преобразуется функцией связи, чтобы ограничить ее значение единичным интервалом. Таким образом, предсказания модели можно рассматривать как вероятности первичного исхода, как показано ниже: сигмоидальная функция в Википедии

Это последний активационный слой в карте NN, который включает и выключает нейрон. Здесь также играет роль смещение, и оно гибко смещает кривую, чтобы помочь нам отобразить модель.

Это означает, что вы используете линейную функцию и, следовательно, вход всех нулей всегда будет отображаться на выход всех нулей. Это может быть разумным решением для некоторых систем, но в целом оно слишком ограничительное.

Используя смещение, вы фактически добавляете другое измерение к своему входному пространству, которое всегда принимает значение, равное единице, поэтому вы избегаете входного вектора всех нулей. Вы не теряете общности из-за этого, потому что ваша обученная матрица веса не должна быть сюръективной, поэтому она все равно может отображать все возможные ранее значения.

2d ANN:

Для ANN, отображающего два измерения в одно измерение, например, при воспроизведении функций AND или OR (или XOR), вы можете думать о нейронной сети как о следующем:

Обратите внимание, что функция XOR в этой ситуации не может быть решена даже с предвзятым отношением.

Когда вы используете ANN, вы редко знаете о внутренностях систем, которые вы хотите изучить. Некоторые вещи не могут быть изучены без предвзятости. Например, взгляните на следующие данные: (0, 1), (1, 1), (2, 1), в основном функция, которая отображает любой x на 1.

Если у вас есть одноуровневая сеть (или линейное отображение), вы не сможете найти решение. Однако, если у вас есть предвзятость, это тривиально!

В идеальном случае смещение может также отобразить все точки на среднее значение целевых точек и позволить скрытым нейронам моделировать различия от этой точки.

Введение смещения нейронов позволяет смещать кривую передаточной функции по горизонтали (влево / вправо) вдоль входной оси, оставляя форму / кривизну без изменений. Это позволит сети создавать произвольные выходные данные, отличные от значений по умолчанию, и, следовательно, вы можете настроить / сместить отображение ввода-вывода в соответствии с вашими конкретными потребностями.

Просто добавить ко всему этому то, чего очень не хватает, а остальное, скорее всего, не знает.

Если вы работаете с изображениями, вы можете вообще не использовать смещение. Теоретически, таким образом ваша сеть будет более независимой от величины данных, например, будет ли изображение темным или ярким и ярким. И сеть научится выполнять свою работу, изучая относительность внутри ваших данных. Многие современные нейронные сети используют это.

В нескольких экспериментах в моей магистерской работе (например, на странице 59) я обнаружил, что смещение может быть важным для первого (ых) слоя (ов), но особенно в полностью связанных слоях в конце, похоже, оно не играет большой роли.

Это может сильно зависеть от сетевой архитектуры / набора данных.

Смещение решает, на какой угол вы хотите, чтобы ваш вес вращался.

QkrlU

Теперь нам нужно найти границу решения, граница идеи должна быть:

cwMBr

Видеть? W перпендикулярно нашей границе. Таким образом, мы говорим, что W решил направление границы.

Тем не менее, трудно найти правильный W в первый раз. В основном мы выбираем исходное значение W случайным образом. Таким образом, первая граница может быть такой: 1RMd2

Теперь граница ближе к оси y.

Мы хотим повернуть границу, как?

Итак, мы используем функцию правила обучения: W ‘= W + P: 0W94e

W ‘= W + P эквивалентно W’ = W + bP, а b = 1.

Следовательно, изменяя значение b (смещение), вы можете выбрать угол между W ‘и W. Это «правило обучения ANN».

Вы также можете прочитать « Проект нейронной сети» Мартина Т. Хагана / Говарда Б. Демута / Марка Х. Била, глава 4 «Правило обучения перцептрона»

Если мы игнорируем смещение, многие входные данные могут быть представлены многими одинаковыми весами (то есть выученными весами). основном встречаются близко к началу координат (0,0). В этом случае модель будет ограничена меньшими количествами хороших весовых коэффициентов, вместо многих других хороших весов он мог бы лучше учиться с предвзятостью (где плохо изученные веса приводят к худшим догадкам или уменьшению способности угадывать нейронной сети)

Таким образом, оптимальным является то, что модель обучается как вблизи источника, так и в максимально возможном количестве мест внутри границы порога / решения. С предвзятостью мы можем предоставить степени свободы, близкие к источнику, но не ограничиваясь непосредственным регионом происхождения.

Ваша сеть пытается выучить коэффициенты a и b для адаптации к вашим данным. Итак, вы можете понять, почему добавление элемента b * 1 позволяет ему лучше соответствовать большему количеству данных: теперь вы можете изменить как наклон, так и перехват.

Если у вас есть более одного ввода, ваше уравнение будет выглядеть так:

Обратите внимание, что уравнение все еще описывает один нейрон, одну выходную сеть; если у вас больше нейронов, вы просто добавляете одно измерение в матрицу коэффициентов, чтобы мультиплексировать входы во все узлы и суммировать вклад каждого узла.

Что вы можете написать в векторизованном формате как

т.е., помещая коэффициенты в один массив и (входы + смещение) в другой, вы получаете желаемое решение в виде точечного произведения двух векторов (вам нужно переставить X, чтобы фигура была правильной, я написал XT как ‘X транспонированный’)

Таким образом, в конце вы также можете увидеть свое смещение как еще один вход для представления той части вывода, которая фактически не зависит от вашего ввода.

Источник

Нейронные сети для начинающих. Часть 1

4a261dc6abcea37cf448267c74f0363c

Привет всем читателям Habrahabr, в этой статье я хочу поделиться с Вами моим опытом в изучении нейронных сетей и, как следствие, их реализации, с помощью языка программирования Java, на платформе Android. Мое знакомство с нейронными сетями произошло, когда вышло приложение Prisma. Оно обрабатывает любую фотографию, с помощью нейронных сетей, и воспроизводит ее с нуля, используя выбранный стиль. Заинтересовавшись этим, я бросился искать статьи и «туториалы», в первую очередь, на Хабре. И к моему великому удивлению, я не нашел ни одну статью, которая четко и поэтапно расписывала алгоритм работы нейронных сетей. Информация была разрознена и в ней отсутствовали ключевые моменты. Также, большинство авторов бросается показывать код на том или ином языке программирования, не прибегая к детальным объяснениям.

Поэтому сейчас, когда я достаточно хорошо освоил нейронные сети и нашел огромное количество информации с разных иностранных порталов, я хотел бы поделиться этим с людьми в серии публикаций, где я соберу всю информацию, которая потребуется вам, если вы только начинаете знакомство с нейронными сетями. В этой статье, я не буду делать сильный акцент на Java и буду объяснять все на примерах, чтобы вы сами смогли перенести это на любой, нужный вам язык программирования. В последующих статьях, я расскажу о своем приложении, написанном под андроид, которое предсказывает движение акций или валюты. Иными словами, всех желающих окунуться в мир нейронных сетей и жаждущих простого и доступного изложения информации или просто тех, кто что-то не понял и хочет подтянуть, добро пожаловать под кат.

Первым и самым важным моим открытием был плейлист американского программиста Джеффа Хитона, в котором он подробно и наглядно разбирает принципы работы нейронных сетей и их классификации. После просмотра этого плейлиста, я решил создать свою нейронную сеть, начав с самого простого примера. Вам наверняка известно, что когда ты только начинаешь учить новый язык, первой твоей программой будет Hello World. Это своего рода традиция. В мире машинного обучения тоже есть свой Hello world и это нейросеть решающая проблему исключающего или(XOR). Таблица исключающего или выглядит следующим образом:

a b c
0 0 0
0 1 1
1 0 1
1 1 0

Соответственно, нейронная сеть берет на вход два числа и должна на выходе дать другое число — ответ. Теперь о самих нейронных сетях.

Что такое нейронная сеть?

947cdd91841e5ec69db32eddb7a070e9

Нейронная сеть — это последовательность нейронов, соединенных между собой синапсами. Структура нейронной сети пришла в мир программирования прямиком из биологии. Благодаря такой структуре, машина обретает способность анализировать и даже запоминать различную информацию. Нейронные сети также способны не только анализировать входящую информацию, но и воспроизводить ее из своей памяти. Заинтересовавшимся обязательно к просмотру 2 видео из TED Talks: Видео 1, Видео 2). Другими словами, нейросеть это машинная интерпретация мозга человека, в котором находятся миллионы нейронов передающих информацию в виде электрических импульсов.

Какие бывают нейронные сети?

Пока что мы будем рассматривать примеры на самом базовом типе нейронных сетей — это сеть прямого распространения (далее СПР). Также в последующих статьях я введу больше понятий и расскажу вам о рекуррентных нейронных сетях. СПР как вытекает из названия это сеть с последовательным соединением нейронных слоев, в ней информация всегда идет только в одном направлении.

Для чего нужны нейронные сети?

Нейронные сети используются для решения сложных задач, которые требуют аналитических вычислений подобных тем, что делает человеческий мозг. Самыми распространенными применениями нейронных сетей является:

Классификация — распределение данных по параметрам. Например, на вход дается набор людей и нужно решить, кому из них давать кредит, а кому нет. Эту работу может сделать нейронная сеть, анализируя такую информацию как: возраст, платежеспособность, кредитная история и тд.

Предсказание — возможность предсказывать следующий шаг. Например, рост или падение акций, основываясь на ситуации на фондовом рынке.

Распознавание — в настоящее время, самое широкое применение нейронных сетей. Используется в Google, когда вы ищете фото или в камерах телефонов, когда оно определяет положение вашего лица и выделяет его и многое другое.

Теперь, чтобы понять, как же работают нейронные сети, давайте взглянем на ее составляющие и их параметры.

Что такое нейрон?

image loader

Нейрон — это вычислительная единица, которая получает информацию, производит над ней простые вычисления и передает ее дальше. Они делятся на три основных типа: входной (синий), скрытый (красный) и выходной (зеленый). Также есть нейрон смещения и контекстный нейрон о которых мы поговорим в следующей статье. В том случае, когда нейросеть состоит из большого количества нейронов, вводят термин слоя. Соответственно, есть входной слой, который получает информацию, n скрытых слоев (обычно их не больше 3), которые ее обрабатывают и выходной слой, который выводит результат. У каждого из нейронов есть 2 основных параметра: входные данные (input data) и выходные данные (output data). В случае входного нейрона: input=output. В остальных, в поле input попадает суммарная информация всех нейронов с предыдущего слоя, после чего, она нормализуется, с помощью функции активации (пока что просто представим ее f(x)) и попадает в поле output.

image loader

Важно помнить, что нейроны оперируют числами в диапазоне [0,1] или [-1,1]. А как же, вы спросите, тогда обрабатывать числа, которые выходят из данного диапазона? На данном этапе, самый простой ответ — это разделить 1 на это число. Этот процесс называется нормализацией, и он очень часто используется в нейронных сетях. Подробнее об этом чуть позже.

Что такое синапс?

image loader

Синапс это связь между двумя нейронами. У синапсов есть 1 параметр — вес. Благодаря ему, входная информация изменяется, когда передается от одного нейрона к другому. Допустим, есть 3 нейрона, которые передают информацию следующему. Тогда у нас есть 3 веса, соответствующие каждому из этих нейронов. У того нейрона, у которого вес будет больше, та информация и будет доминирующей в следующем нейроне (пример — смешение цветов). На самом деле, совокупность весов нейронной сети или матрица весов — это своеобразный мозг всей системы. Именно благодаря этим весам, входная информация обрабатывается и превращается в результат.

Важно помнить, что во время инициализации нейронной сети, веса расставляются в случайном порядке.

Как работает нейронная сеть?

image loader

В данном примере изображена часть нейронной сети, где буквами I обозначены входные нейроны, буквой H — скрытый нейрон, а буквой w — веса. Из формулы видно, что входная информация — это сумма всех входных данных, умноженных на соответствующие им веса. Тогда дадим на вход 1 и 0. Пусть w1=0.4 и w2 = 0.7 Входные данные нейрона Н1 будут следующими: 1*0.4+0*0.7=0.4. Теперь когда у нас есть входные данные, мы можем получить выходные данные, подставив входное значение в функцию активации (подробнее о ней далее). Теперь, когда у нас есть выходные данные, мы передаем их дальше. И так, мы повторяем для всех слоев, пока не дойдем до выходного нейрона. Запустив такую сеть в первый раз мы увидим, что ответ далек от правильно, потому что сеть не натренирована. Чтобы улучшить результаты мы будем ее тренировать. Но прежде чем узнать как это делать, давайте введем несколько терминов и свойств нейронной сети.

Функция активации

Функция активации — это способ нормализации входных данных (мы уже говорили об этом ранее). То есть, если на входе у вас будет большое число, пропустив его через функцию активации, вы получите выход в нужном вам диапазоне. Функций активации достаточно много поэтому мы рассмотрим самые основные: Линейная, Сигмоид (Логистическая) и Гиперболический тангенс. Главные их отличия — это диапазон значений.

image loader

Эта функция почти никогда не используется, за исключением случаев, когда нужно протестировать нейронную сеть или передать значение без преобразований.

image loader

Это самая распространенная функция активации, ее диапазон значений [0,1]. Именно на ней показано большинство примеров в сети, также ее иногда называют логистической функцией. Соответственно, если в вашем случае присутствуют отрицательные значения (например, акции могут идти не только вверх, но и вниз), то вам понадобиться функция которая захватывает и отрицательные значения.

image loader

Имеет смысл использовать гиперболический тангенс, только тогда, когда ваши значения могут быть и отрицательными, и положительными, так как диапазон функции [-1,1]. Использовать эту функцию только с положительными значениями нецелесообразно так как это значительно ухудшит результаты вашей нейросети.

Тренировочный сет

Тренировочный сет — это последовательность данных, которыми оперирует нейронная сеть. В нашем случае исключающего или (xor) у нас всего 4 разных исхода то есть у нас будет 4 тренировочных сета: 0xor0=0, 0xor1=1, 1xor0=1,1xor1=0.

Итерация

Это своеобразный счетчик, который увеличивается каждый раз, когда нейронная сеть проходит один тренировочный сет. Другими словами, это общее количество тренировочных сетов пройденных нейронной сетью.

Эпоха

При инициализации нейронной сети эта величина устанавливается в 0 и имеет потолок, задаваемый вручную. Чем больше эпоха, тем лучше натренирована сеть и соответственно, ее результат. Эпоха увеличивается каждый раз, когда мы проходим весь набор тренировочных сетов, в нашем случае, 4 сетов или 4 итераций.

image loader

Важно не путать итерацию с эпохой и понимать последовательность их инкремента. Сначала n
раз увеличивается итерация, а потом уже эпоха и никак не наоборот. Другими словами, нельзя сначала тренировать нейросеть только на одном сете, потом на другом и тд. Нужно тренировать каждый сет один раз за эпоху. Так, вы сможете избежать ошибок в вычислениях.

Ошибка

Ошибка — это процентная величина, отражающая расхождение между ожидаемым и полученным ответами. Ошибка формируется каждую эпоху и должна идти на спад. Если этого не происходит, значит, вы что-то делаете не так. Ошибку можно вычислить разными путями, но мы рассмотрим лишь три основных способа: Mean Squared Error (далее MSE), Root MSE и Arctan. Здесь нет какого-либо ограничения на использование, как в функции активации, и вы вольны выбрать любой метод, который будет приносить вам наилучший результат. Стоит лишь учитывать, что каждый метод считает ошибки по разному. У Arctan, ошибка, почти всегда, будет больше, так как он работает по принципу: чем больше разница, тем больше ошибка. У Root MSE будет наименьшая ошибка, поэтому, чаще всего, используют MSE, которая сохраняет баланс в вычислении ошибки.

image loader

image loader

image loader

Принцип подсчета ошибки во всех случаях одинаков. За каждый сет, мы считаем ошибку, отняв от идеального ответа, полученный. Далее, либо возводим в квадрат, либо вычисляем квадратный тангенс из этой разности, после чего полученное число делим на количество сетов.

Задача

Теперь, чтобы проверить себя, подсчитайте результат, данной нейронной сети, используя сигмоид, и ее ошибку, используя MSE.

image loader

H1input = 1*0.45+0*-0.12=0.45
H1output = sigmoid(0.45)=0.61

H2input = 1*0.78+0*0.13=0.78
H2output = sigmoid(0.78)=0.69

O1input = 0.61*1.5+0.69*-2.3=-0.672
O1output = sigmoid(-0.672)=0.33

Результат — 0.33, ошибка — 45%.

Большое спасибо за внимание! Надеюсь, что данная статья смогла помочь вам в изучении нейронных сетей. В следующей статье, я расскажу о нейронах смещения и о том, как тренировать нейронную сеть, используя метод обратного распространения и градиентного спуска.

Источник

Adblock
detector